Saturday 14 October 2017

Enkel Bevegelse Gjennomsnittet Stata


Flytte gjennomsnitt Gjeldende gjennomsnitt Med konvensjonelle datasett er gjennomsnittlig verdi ofte den første, og en av de mest nyttige, oppsummerte statistikkene for å beregne. Når data er i form av en tidsserie, er seriemengden et nyttig mål, men reflekterer ikke dataens dynamiske natur. Gjennomsnittlige verdier som beregnes over kortere perioder, enten før den nåværende perioden eller sentrert i den nåværende perioden, er ofte mer nyttige. Fordi slike middelverdier vil variere, eller flytte, som den nåværende perioden beveger seg fra tid t 2, t 3. etc. er de kjent som bevegelige gjennomsnitt (Mas). Et enkelt glidende gjennomsnitt er (typisk) det uveide gjennomsnittet av k tidligere verdier. Et eksponentielt vektet glidende gjennomsnitt er i det vesentlige det samme som et enkelt bevegelige gjennomsnitt, men med bidrag til middelvektet av deres nærhet til den nåværende tid. Fordi det ikke er en, men en hel rekke bevegelige gjennomsnittsverdier for en gitt serie, kan settet Mas selv bli plottet på grafer, analysert som en serie, og brukes til modellering og prognoser. En rekke modeller kan bygges ved hjelp av bevegelige gjennomsnitt, og disse er kjent som MA-modeller. Hvis slike modeller er kombinert med autoregressive (AR) modeller, er de resulterende komposittmodellene kjent som ARMA - eller ARIMA-modeller (jeg er for integrert). Enkle bevegelige gjennomsnitt Siden en tidsserie kan betraktes som et sett med verdier, kan t 1,2,3,4, n gjennomsnittet av disse verdiene beregnes. Hvis vi antar at n er ganske stor, og vi velger et heltall k som er mye mindre enn n. vi kan beregne et sett med blokk gjennomsnitt eller enkle bevegelige gjennomsnitt (av rekkefølge k): Hvert mål representerer gjennomsnittet av dataverdiene over et intervall av k observasjoner. Merk at den første mulige MA for ordre k gt0 er den for t k. Mer generelt kan vi slippe det ekstra abonnementet i uttrykkene ovenfor og skrive: Dette sier at estimert gjennomsnitt på tidspunktet t er det enkle gjennomsnittet av den observerte verdien ved tid t og de foregående k -1-trinnene. Hvis det legges vekt på som reduserer bidraget til observasjoner som er lengre bort i tiden, sies det glidende gjennomsnittet å være eksponensielt jevnt. Flytende gjennomsnitt blir ofte brukt som en form for prognoser, hvorved estimert verdi for en serie på tiden t 1, S t1. er tatt som MA for perioden til og med tiden t. f. eks dagens estimat er basert på et gjennomsnitt av tidligere registrerte verdier fram til og med gårdager (for daglige data). Enkle bevegelige gjennomsnitt kan ses som en form for utjevning. I eksemplet som er vist nedenfor, er luftforurensningsdatasettet vist i introduksjonen til dette emnet blitt utvidet med en 7-dagers glidende gjennomsnittlig (MA) - linje, vist her i rødt. Som det ser ut, jevner MA-linjen ut toppene og troughene i dataene og kan være svært nyttig når det gjelder å identifisere trender. Standard forward-beregning formel betyr at de første k -1 datapunktene ikke har noen MA-verdi, men deretter utvider beregningene til det endelige datapunktet i serien. PM10 daglige gjennomsnittsverdier, Greenwich kilde: London Air Quality Network, londonair. org. uk En grunn til å beregne enkle bevegelige gjennomsnitt på måten som er beskrevet er at det gjør det mulig å beregne verdier for alle tidsluker fra tid tk frem til i dag, og Som en ny måling er oppnådd for tid t 1, kan MA for tid t 1 legges til settet som allerede er beregnet. Dette gir en enkel prosedyre for dynamiske datasett. Det er imidlertid noen problemer med denne tilnærmingen. Det er rimelig å argumentere for at gjennomsnittsverdien i løpet av de siste 3 periodene, skal være plassert ved tidspunktet t -1, ikke tiden t. og for en MA over et jevnt antall perioder, bør det kanskje ligge midt mellom to tidsintervaller. En løsning på dette problemet er å bruke sentrale MA beregninger, der MA på tidspunktet t er gjennomsnittet av et symmetrisk sett med verdier rundt t. Til tross for det åpenbare meritter, er denne tilnærmingen ikke vanligvis brukt fordi det krever at data er tilgjengelig for fremtidige hendelser, noe som kanskje ikke er tilfelle. I tilfeller der analysen er helt av en eksisterende serie, kan bruk av sentrert Mas være å foretrekke. Enkle bevegelige gjennomsnitt kan betraktes som en form for utjevning, fjerne noen høyfrekvente komponenter i en tidsserie og markere (men ikke fjerne) trender på samme måte som det generelle begrepet digital filtrering. Faktisk er glidende gjennomsnitt en form for lineært filter. Det er mulig å bruke en bevegelig gjennomsnittsberegning til en serie som allerede har blitt utjevnet, dvs. utjevning eller filtrering av en allerede glatt serie. For eksempel, med et bevegelige gjennomsnitt på rekkefølge 2, kan vi betrakte det som beregnet ved hjelp av vekter, så MA ved x 2 0,5 x 1 0,5 x 2. På samme måte MA på x 3 0,5 x 2 0,5 x 3. Hvis vi bruk et andre nivå av utjevning eller filtrering, vi har 0,5 x 2 0,5 x 3 0,5 (0,5 x 2 0,5 x 3) 0,25 x 1 0,5 x 2 0,25 x 3 dvs. 2-trinns filtrering prosess (eller convolution) har produsert et variabelt vektet symmetrisk glidende gjennomsnitt, med vekter. Flere konvolutter kan produsere ganske komplekse vektede glidende gjennomsnitt, hvorav noen har blitt funnet å være særlig bruk i spesialiserte felt, som for eksempel i livsforsikringsberegninger. Flytte gjennomsnitt kan brukes til å fjerne periodiske effekter dersom det beregnes med periodikkets lengde som kjent. For eksempel, med månedlige data kan sesongvariasjoner ofte fjernes (hvis dette er målet) ved å bruke et symmetrisk 12-måneders glidende gjennomsnitt med alle månedene vektet like, bortsett fra det første og det siste som veies med 12. Dette skyldes at det vil være 13 måneder i den symmetriske modellen (nåværende tid, t. - 6 måneder). Summen er delt med 12. Lignende prosedyrer kan vedtas for en veldefinert periodicitet. Eksponentielt vektede glidende gjennomsnitt (EWMA) Med den enkle glidende gjennomsnittsformelen: Alle observasjoner er likevektede. Hvis vi kalte disse likevektene, alfa t. hver av k-vekter vil være lik 1 k. så summen av vektene ville være 1, og formelen ville være: Vi har allerede sett at flere applikasjoner av denne prosessen resulterer i at vektene varierer. Med eksponentielt vektede glidende gjennomsnitt blir bidraget til middelverdien fra observasjoner som er fjernet i tid, redusert, og derved legges vekt på nyere (lokale) hendelser. I hovedsak er en utjevningsparameter, 0lt al1l, introdusert, og formelen er revidert til: En symmetrisk versjon av denne formelen vil være av formen: Hvis vektene i den symmetriske modellen er valgt som betingelsene i betingelsene for binomial ekspansjonen, (1212) 2q. de vil summe til 1, og når q blir stor, vil omtrentlig normalfordelingen. Dette er en form for kjernevikting, med binomialet som kjernefunksjon. Den to-trinns konvolusjon som er beskrevet i det foregående avsnitt er nettopp dette arrangementet, med q 1, som gir vekter. Ved eksponensiell utjevning er det nødvendig å bruke et sett med vekter som summerer til 1 og som reduserer størrelsen geometrisk. Vektene som brukes er vanligvis av skjemaet: For å vise at disse vektene summerer til 1, vurder utvidelsen av 1 som en serie. Vi kan skrive og utvide uttrykket i parentes ved hjelp av binomialformelen (1- x) s. hvor x (1-) og p -1, som gir: Dette gir da en form for vektet glidende gjennomsnitt av skjemaet: Denne summeringen kan skrives som en tilbakevendingsrelasjon: som forenkler beregningen sterkt og unngår problemet at vektningsregimet bør strengt være uendelig for vektene til summen til 1 (for små verdier av alfa. dette er vanligvis ikke tilfelle). Notasjonen som brukes av ulike forfattere varierer. Noen bruker bokstaven S for å indikere at formelen er i hovedsak en glatt variabel, og skriv: mens kontrollteori litteraturen ofte bruker Z i stedet for S for eksponentielt vektede eller jevnte verdier (se for eksempel Lucas og Saccucci, 1990, LUC1 , og NIST-nettsiden for flere detaljer og arbeidede eksempler). Formlene som er nevnt ovenfor kommer fra Roberts arbeid (1959, ROB1), men Hunter (1986, HUN1) bruker et uttrykk for formen: som kan være mer hensiktsmessig for bruk i noen kontrollprosedyrer. Med alfa 1 er gjennomsnittlig estimering bare dens målte verdi (eller verdien av forrige datapost). Med 0,5 er estimatet det enkle glidende gjennomsnittet for nåværende og tidligere målinger. I prognosemodellene er verdien S t. brukes ofte som estimat eller prognoseverdi for neste tidsperiode, det vil si som estimatet for x på tidspunktet t 1. Dermed har vi: Dette viser at prognosen på tidspunktet t 1 er en kombinasjon av det forrige eksponentielt veide glidende gjennomsnittet pluss en komponent som representerer den veide prediksjonsfeilen, epsilon. på tidspunktet t. Forutsatt at en tidsserie er gitt og det kreves en prognose, er det nødvendig med en verdi for alfa. Dette kan estimeres fra eksisterende data ved å evaluere summen av kvadrert prediksjon feil oppnådd med varierende verdier av alfa for hver t 2,3. sette det første estimatet til å være den første observerte dataværdien, x 1. I kontrollapplikasjoner er verdien av alfa viktig, da den brukes til å bestemme de øvre og nedre kontrollgrensene, og påvirker den forventede gjennomsnittlige kjølelengde (ARL) før disse kontrollgrensene er brutt (under antagelsen om at tidsseriene representerer et sett av tilfeldige, identisk distribuerte uavhengige variabler med vanlig varians). Under disse forholdene er variansen av kontrollstatistikken: (Lucas og Saccucci, 1990): Kontrollgrenser settes vanligvis som faste multipler av denne asymptotiske variansen, f. eks. - 3 ganger standardavviket. Hvis f. eks. Alpha 0,25 og dataene som overvåkes antas å ha en Normal fordeling, N (0,1), når den er i kontroll, vil kontrollgrensene være - 1,134 og prosessen vil nå en eller annen grense i 500 trinn gjennomsnittlig. Lucas og Saccucci (1990 LUC1) utlede ARLene for et bredt spekter av alfaverdier og under ulike forutsetninger ved bruk av Markov Chain-prosedyrer. De tabulerer resultatene, inkludert å gi ARLer når gjennomsnittet av kontrollprosessen har blitt forskjøvet med noen flere av standardavviket. For eksempel, med en 0,5 skift med alfa 0,25 er ARL mindre enn 50 timers trinn. Tilnærmingene beskrevet ovenfor er kjent som enkelt eksponensiell utjevning. ettersom prosedyrene blir brukt en gang til tidsserien, og deretter utføres analyser eller kontrollprosesser på det resulterende glatte datasettet. Hvis datasettet inneholder en trend og sesongkomponenter, kan to - eller tre-trinns eksponensiell utjevning brukes som et middel til å fjerne (eksplisitt modellering) disse effektene (se videre avsnittet om prognose nedenfor og NIST-arbeidet). CHA1 Chatfield C (1975) Analyse av Times Series: Teori og praksis. Chapman og Hall, London HUN1 Hunter J S (1986) Det eksponentielt vektede glidende gjennomsnittet. J of Quality Technology, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) Eksponentielt vektede Flytte Gjennomsnittlige kontrollsystemer: Egenskaper og forbedringer. Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) Kontrolldiagramtester basert på geometriske bevegelige gjennomsnitt. Technometrics, 1, 239-250What039s forskjellen mellom glidende gjennomsnitt og vektet glidende gjennomsnitt. Et 5-års glidende gjennomsnitt, basert på prisene ovenfor, ble beregnet ved hjelp av følgende formel: Basert på ligningen ovenfor ble gjennomsnittsprisen over perioden oppført over var 90,66. Bruk av bevegelige gjennomsnitt er en effektiv metode for å eliminere sterke prisfluktuasjoner. Nøkkelbegrensningen er at datapunkter fra eldre data ikke veier noe annerledes enn datapunkter nær begynnelsen av datasettet. Dette er hvor vektede glidende gjennomsnitt kommer til spill. Veidede gjennomsnitt gir tyngre vekting til mer gjeldende datapunkter siden de er mer relevante enn datapunkter i den fjerne fortiden. Summen av vektingen skal legge til opptil 1 (eller 100). Når det gjelder det enkle glidende gjennomsnittet, er vektene fordelt like mye, og derfor er de ikke vist i tabellen ovenfor. Sluttpris for AAPLTime Series Metoder Tidsseriemetoder er statistiske teknikker som benytter historiske data akkumulert over en tidsperiode. Tidsseriemetoder antar at det som har skjedd tidligere, vil fortsette å skje i fremtiden. Som navnet serier antyder, relaterer disse metodene prognosen til bare en faktor - tid. De inkluderer glidende gjennomsnitt, eksponensiell utjevning og lineær trendlinje, og de er blant de mest populære metodene for kortvarig prognose blant service - og produksjonsbedrifter. Disse metodene forutsetter at identifiserbare historiske mønstre eller trender for etterspørsel over tid vil gjenta seg. Flytende gjennomsnitt En prognos for tidsserier kan være så enkel som bruk av etterspørsel i den nåværende perioden for å forutse etterspørselen i neste periode. Dette kalles noen ganger en naiv eller intuitiv prognose. 4 For eksempel, hvis etterspørselen er 100 enheter denne uken, er prognosen for neste ukes etterspørsel 100 enheter dersom etterspørselen viser seg å være 90 enheter i stedet, så er etterspørselen etter følgende uker 90 enheter, og så videre. Denne typen prognosemetode tar ikke hensyn til historisk etterspørselsadferd som den bare bygger på etterspørsel i den nåværende perioden. Det reagerer direkte på de normale, tilfeldige bevegelsene i etterspørselen. Den enkle glidende gjennomsnittsmetoden bruker flere etterspørselsverdier i løpet av den siste tiden til å utvikle en prognose. Dette har en tendens til å dempe eller glatte ut, tilfeldige økninger og reduksjoner av en prognose som bare bruker en periode. Det enkle glidende gjennomsnittet er nyttig for å forutse etterspørselen som er stabil og viser ikke noen uttalt etterspørselsadferd, for eksempel en trend eller sesongmessig mønster. Flytende gjennomsnitt beregnes for bestemte perioder, for eksempel tre måneder eller fem måneder, avhengig av hvor mye forecasteren ønsker å glatte etterspørseldataene. Jo lengre glidende gjennomsnittsperiode, jo jevnere blir det. Formelen for beregning av det enkle glidende gjennomsnittet er å beregne et enkelt bevegelige gjennomsnitt. Instant Paper Clip Office Supply Company selger og leverer kontorrekvisita til bedrifter, skoler og byråer innen en radius på 50 kilometer fra lageret. Kontorforsyningsvirksomheten er konkurransedyktig, og evnen til å levere bestillinger raskt er en faktor for å få nye kunder og holde gamle. (Kontorene bestiller vanligvis ikke når de går lite på forsyninger, men når de går helt tom. Som et resultat trenger de straks sine bestillinger.) Sjefen for selskapet ønsker å være sikre nok drivere og kjøretøyer er tilgjengelige for å levere bestillinger omgående og De har tilstrekkelig lagerbeholdning på lager. Derfor ønsker lederen å kunne regne ut antall ordrer som vil skje i løpet av den neste måneden (dvs. for å prognose etterspørselen etter leveranser). Fra registreringer av leveringsordrer har ledelsen akkumulert følgende data de siste 10 månedene, hvorfra den vil beregne 3- og 5-måneders glidende gjennomsnitt. La oss anta at det er slutten av oktober. Prognosen som følge av enten 3- eller 5-måneders glidende gjennomsnitt er typisk for neste måned i sekvensen, som i dette tilfellet er november. Det bevegelige gjennomsnittet beregnes fra etterspørselen etter ordre for de foregående 3 månedene i sekvensen i henhold til følgende formel: 5-måneders glidende gjennomsnitt beregnes fra de foregående 5 månedene av etterspørseldata som følger: 3- og 5-måneders Flytte gjennomsnittlige prognoser for alle månedene av etterspørseldata er vist i følgende tabell. Faktisk vil bare prognosen for november basert på den siste månedlige etterspørselen bli brukt av lederen. De tidligere prognosene for tidligere måneder tillater oss imidlertid å sammenligne prognosen med den faktiske etterspørselen for å se hvor nøyaktig prognosemetoden er - det vil si hvor bra det gjør. Tre - og fem-måneders gjennomsnitt Både glidende gjennomsnittlige prognoser i tabellen ovenfor har en tendens til å utjevne variabiliteten i de faktiske dataene. Denne utjevningseffekten kan observeres i følgende figur hvor 3-måneders og 5-måneders gjennomsnitt er lagt på en graf av de opprinnelige dataene: Det 5-måneders glidende gjennomsnittet i foregående figur utjevner svingninger i større grad enn 3 måneders glidende gjennomsnitt. Imidlertid gjenspeiler 3-måneders gjennomsnittet de nyeste dataene som er tilgjengelige for kontorforvalteren. Generelt er prognoser som bruker lengre periode glidende gjennomsnitt, langsommere å reagere på de siste endringene i etterspørselen enn de som ble gjort ved hjelp av glidende gjennomsnitt for kortere periode. De ekstra dataperiodene demper hastigheten som prognosen svarer på. Etablering av riktig antall perioder som skal brukes i en bevegelig gjennomsnittlig prognose krever ofte litt prøve-og-feil-eksperimentering. Ulempen med den bevegelige gjennomsnittlige metoden er at den ikke reagerer på variasjoner som oppstår av en grunn, for eksempel sykluser og sesongmessige effekter. Faktorer som forårsaker endringer blir generelt ignorert. Det er i utgangspunktet en mekanisk metode som gjenspeiler historiske data på en konsistent måte. Den glidende gjennomsnittlige metoden har imidlertid fordelen av å være enkel å bruke, rask og relativt billig. Generelt kan denne metoden gi en god prognose på kort sikt, men det bør ikke presses for langt inn i fremtiden. Veidende Flytende Gjennomsnitt Den bevegelige gjennomsnittlige metoden kan justeres for å bedre reflektere svingninger i dataene. I den vektede glidende gjennomsnittlige metoden blir vektene tilordnet de nyeste dataene i henhold til følgende formel: Etterspørseldataene for PM Computer Services (vist i tabellen for eksempel 10.3) ser ut til å følge en økende lineær trend. Selskapet ønsker å beregne en lineær trendlinje for å se om den er mer nøyaktig enn eksponensiell utjevning og justerte eksponensielle utjevningsprognoser utviklet i eksempler 10.3 og 10.4. Verdiene som kreves for de minste kvadratberegninger er som følger: Ved bruk av disse verdiene beregnes parametrene for den lineære trendlinjen som følger: Derfor er den lineære trendlinjekvasjonen å beregne en prognose for periode 13, la x 13 i lineær trendlinje: Følgende graf viser den lineære trendlinjen sammenlignet med de faktiske dataene. Treningslinjen ser ut til å gjenspeile nøye de faktiske dataene, det vil si å være en god form og dermed være en god prognosemodell for dette problemet. En ulempe med den lineære trendlinjen er imidlertid at den ikke vil tilpasse seg en endring i trenden, da de eksponentielle utjevningsprognosene vil det vil si det antas at alle fremtidige prognoser vil følge en rett linje. Dette begrenser bruken av denne metoden til en kortere tidsramme der du kan være relativt sikker på at trenden ikke vil endre seg. Seasonal Adjustments Et sesongmessig mønster er en repeterende økning og nedgang i etterspørselen. Mange etterspørselsprodukter viser sesongmessig oppførsel. Klærsalg følger årlige sesongmønstre, hvor etterspørselen etter varme klær øker om høsten og vinteren og faller om våren og sommeren ettersom etterspørselen etter kjøligere klær øker. Etterspørselen etter mange detaljhandler, inkludert leker, sportsutstyr, klær, elektroniske apparater, skinke, kalkuner, vin og frukt, øker i løpet av høytiden. Krav til hilsekort øker i forbindelse med spesielle dager som Valentinsdag og Morsdag. Sesongmønstre kan også forekomme på en månedlig, ukentlig eller daglig basis. Noen restauranter har høyere etterspørsel om kvelden enn til lunsj eller i helgene i motsetning til hverdager. Trafikk - dermed salg - i kjøpesentre plukker opp fredag ​​og lørdag. Det finnes flere metoder for å reflektere sesongmessige mønstre i en tidsserie-prognose. Vi vil beskrive en av de enklere metodene ved å bruke en sesongfaktor. En sesongfaktor er en tallverdi som multipliseres med den normale prognosen for å få en sesongjustert prognose. En metode for å utvikle en etterspørsel etter sesongmessige faktorer er å dele etterspørselen etter hver sesongperiode med total årlig etterspørsel, i henhold til følgende formel: De resulterende sesongfaktorene mellom 0 og 1,0 er faktisk den del av den totale årlige etterspørselen som er tildelt hver sesong. Disse sesongmessige faktorene multipliseres med den årlige forventede etterspørselen for å gi justerte prognoser for hver sesong. Beregner en prognose med sesongjusteringer. Wishbone Farms vokser kalkuner for å selge til et kjøttproduserende selskap gjennom hele året. Men høysesongen er åpenbart i løpet av fjerde kvartal av året, fra oktober til desember. Wishbone Farms har opplevd etterspørselen etter kalkuner de siste tre årene vist i følgende tabell: Fordi vi har tre års etterspørseldata, kan vi beregne sesongfaktorene ved å dele totalt kvartalsbehov for de tre årene etter total etterspørsel i alle tre år : Deretter vil vi multiplisere den forventede etterspørselen etter neste år, 2000, ved hver sesongfaktor for å få forventet etterspørsel etter hvert kvartal. For å oppnå dette trenger vi en etterspørselsprognose for 2000. I dette tilfellet, siden etterspørseldataene i tabellen ser ut til å vise en generelt økende trend, beregner vi en lineær trendlinje for de tre årene med data i tabellen for å bli tøffe prognose estimat: Prognosen for 2000 er således 58,17, eller 58,170 kalkuner. Ved å bruke denne årlige prognosen for etterspørsel er de sesongjusterte prognosene, SF i, for 2000 Sammenligning av disse kvartalsprognosene med de faktiske etterspørselsverdiene i tabellen, synes de å være relativt gode prognoser som reflekterer både sesongvariasjoner i dataene og den generelle oppadgående trenden. 10-12. Hvordan er den bevegelige gjennomsnittlige metoden lik eksponensiell utjevning 10-13. Hvilken effekt på eksponensiell utjevningsmodell vil øke utjevningskonstanten har 10-14. Hvordan skiller den justerte eksponensielle utjevningen seg fra eksponensiell utjevning 10-15. Hva bestemmer valget av utjevningskonstanten for trend i en justert eksponensiell utjevningsmodell 10-16. I kapitteleksemplene for tidsseriemetoder ble startprognosen alltid antatt å være den samme som den faktiske etterspørselen i første periode. Foreslå andre måter at startprognosen kan utledes ved faktisk bruk. 10-17. Hvordan er lineær trendlinjeprognosemodell forskjellig fra en lineær regresjonsmodell for prognoser 10-18. Av tidsseriemodellene som presenteres i dette kapittelet, inkludert det bevegelige gjennomsnittlige og vektede glidende gjennomsnittet, eksponensiell utjevning og justert eksponensiell utjevning, og lineær trendlinje, hvilken anser du best Hvorfor 10-19. Hvilke fordeler har justert eksponensiell utjevning over en lineær trendlinje for forventet etterspørsel som viser en trend 4 K. B. Kahn og J. T. Mentzer, Forecasting in Consumer and Industrial Markets, Journal of Business Forecasting 14, nr. 2 (sommeren 1995): 21-28.

No comments:

Post a Comment